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Although widely used, the population analysis proposed by Mulliken has been 
contested by several authors. A new analysis, very easily computed on the 
orthogonal basis, is here proposed and applied to the EHT wave function. 

Under its usual presentation, the EHT method is unable to directly evaluate 
bond lengths through an energy minimum condition. However, it is possible to 
settle an empirical quadratic relation between the bond length R~s and a 
quantity called Prs, similar to a bond population. Such relations are given for 
bonds of the CC, CN, CO, CS, CF, CC1, CBr, CH, NO and OH types. 

The examination of the variation of the bond population under a variation of 
the bond length has enabled us to prove that this semi-empirical relation was 
usable in an iterative process: starting from bond lengths taken from any 
systematic table, it is possible, for a given molecule, to evaluate the bond length 
consistent with experimental values within an accuracy of 0.03 A. Some 
examples, concerning cyclic or acyclic molecules and various kinds of bonds, 
are given. 
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The extension of  the Hi.ickel method to the whole set of valence electrons (EHT) 
was first formulated by R. Hoffmann [1] in 1963. Since then, many authors have 
proposed some modifications or corrections. For instance, P. Schuster gave 
arguments to introduce an electrostatic correction [2], and Engelke and Beckel [3] 
made the suggestion that the variation of the EHT molecular energy with inter- 
atomic distance could be improved if their expression of the K constant was used 
instead of the classic Wolfsberg-Helmholtz approximation. 

In fact, even if the genuine K ~ method proposed by Hoffmann or if the more 
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2 C.R. Guerillot et al 

elaborate K(R) proposed by Engelke and Beckel are used, with or without taking 
in account Schuster's correction, any attempt to forecast chemical bond lengths 
from an energy minimum condition leads to very erratic and unrealistic results for 
polyatomic species. ~ The same failure is encountered for valency angles. 

The aim of this paper is to show that a semi-empirical procedure may be formulated 
in order to forecast, within an acceptable accuracy, chemical bond lengths. 

1. EHT Formalism and Mulliken's Population Analysis 

The EHT procedure may be summarized as follows: 

First step: a subset of real Slater's functions 4,r~ is associated with each center in 
the following way 

i 1 2 3 4 . . .  

the whole set of ~,.~ functions associated with the different centers being a normed 
but non-orthogonal basis [4,) called, in this paper, Slater's basis. 

The nature of an atom r is specified by: 

QO, the number of its valence electrons; 
~r~, the orbital parameters of its Slater's functions; 
/r~, its valence state ionization potential. 

To the Slater basis, an overlap matrix [S ~] is now associated defined by 

s ~  = ( 4 1 4 ) .  (1) 

A matrix [h ~] is then built up in order to represent a certain effective Hamiltonian 
on the Slater's basis by setting 

at%, - * ~ ;  ~ = 1 ~ Xsj], (2)  = h,~.~j -~KriejS~j[L~ + 

the choice of K~j depending on the used version. 

Second step: by use of the L6wdin symmetric orthogonalization scheme [4] 
an orthogonal basis set I A), called in this paper L6wdin's basis, is built on the Slater 
basis from 

[a) = [4,)[s*] - ~ .  (3) 

The Hamiltonian matrix becomes 

[hal = [S ~1 - :/2[h~][S~ ]-  ~/2 (4) 

and the equation 

[h~] [C ~] - [C~] [~ ]  = 0 (5)  

1 Of course, the K(R) version leads to results a bit less inaccurate! 
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is solved, [e] being a diagonal matrix. The molecular orbitals 0~ are then obtained 
and they are expressed, in the L6wdin basis, by 

]qb] = [,~)[Ca]. (6) 

Third step: one comes back to the Slater basis through the deorthogonalization 
procedure: 

I r  = Ir ~] 
[C 4'] = [S'P]- 1/2[C~'] (7) 

and, then, the usual Mulliken population analysis is done [5]. From 

o~ = (8 )  
r l  

the electronic density at point ~ is given by 

PI(P) = ~ ~ P~siCri(P)r (9) 
ri s] 

which, through a whole space integration, leads to 

= = e r i s y S ~ r i s ] ,  P,(~)dv N ~ . . P ~ r i  + ~ . ' ~  e' ~ (10) 

where N is the total number of valence electrons. 

Mulliken identifies the orbital charge Q~ to 

QZ = P~, + ~ ~ PrisyS~r,sy (1 1) 
s q:r .r 

and, then, goes to a global atomic charge Qr ~ by 

Q~ = ~ Q~ (12) 

to an atomic net charge by 

qr ~ = a o _  Q~ (13) 

and, last, to an overlap orbital population * P,i:~j through 

P~i~j ~ = P;isjS'ri. (14) 

leading to an overlap diatomic population P ~  by 

p~,, = ~.. ~ p,,,~,. (15) 
ier Yes 

This analysis, quite exact from the mathematical point of view, has been widely 
used and is popular. However, many authors have contested it [6-10]. For instance, 
it has been pointed out that Mulliken's analysis 

1. may be unfit for heteropolar bonds [9]; 
2. leads to atomic central charges, which is dearly unrealistic for lone pairs [9]; 
3. depends, to a great extent, on the used basis [10]. 
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It must be quoted too that the atomic net charges arising from Mulliken's analysis 
seem to many authors to be exaggerated. Politzer [8] proposes a partition of the 
molecular volume into regions associated with each atom, in order to integrate the 
electronic density. Hirshfeld [9] obtains very similar results from the introduction 
of a sharing function allowing to assign univocally a part of the electronic density 
to a specified atom. It must be emphasized that these criticisms were not connected 
with the use of a particular method of obtainment of the wave function. 

I f  we turn to the bond populations, it seems clear that the Mulliken overlap 
population, bound to a whole space integration, cannot be retained. To remain 
consistent with Politzer's charge definition, a given bond ought to be associated 
with a given "bond region" in which the electronic density will be integrated. 

2. Population Analysis on the LiJwdin Basis 

Implicitly, the rr-electron restricted Hiickel theory implies the use of a basis both 
localized and orthonormalized. The Slater basis is of course localized but is not 
orthonormalized. In the second step, the EHT procedure uses another basis, 
L6wdin's basis, which is, clearly, orthonormalized but not localized. But L6wdin's 
basis, as already shown [4b], is transformed, under a unitary operation, such as a 
symmetry transformation, exactly in the same way as Slater' s basis and approaches 
this basix in the closest way for an orthogonal basis. 

Therefore, it is questionable whether this second step, far from being a simple 
matter of convenience, could not be the more important step, L6wdin's basis being 
the best approximation to Hiickel's basis. Thereafter, the population analysis ought 
to be done with L6wdin's basis. 

If  we do so, from the molecular orbitals 

�9 o = ( 8 ' 1  
r i  

and the electronic density at point 

ri s] 

a whole space integration gives 

f PI(~)dv -= N = ~. er~r,, (10') 
r i  

and, then, in the usual way, 

Qr ~, a (11') = eTm, 

a~ --- ~ arab, (12') 

q~ = QO _ 02. ( l y )  

As the IX) basis is orthonormalized, the whole space integration gives a vanishing 
contribution for the Pri;sj cross-terms. 
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Thereby, the population analysis leads to charges Qra,, Qr a, and q~ that could be 
exposed to the same criticisms as those obtained from the usual Mulliken analysis. 

In fact, the wanted quantities would be computed from an integration on some 
little volumes associated some with atoms and others with bonds, instead of a 
whole space integration. Now, if we introduce the [6 ~] matrix, defined as 

[6e] = IS r - [1], (16) 

a given }~ri function may be developed as a series on the r functions as 

At, = r -- �89 ~ 6~,,,tkC,~ + ~ ~ ~ Y,k,~r~'~,,ut(~,~ + ' ' ' .  (17) 
tk tk ul 

Then, a charge distribution ~i2~j will be 

~ri~sj = ~griCs ] __ 1 ~ ~ritkCttcCs] - -  �89 ~ .  ~syulCnlCri + " ' "  ( 1 8 )  
tk ul 

and the electronic density has the expression 

ri s] 

- �89 + - "  + 52 +...}. 
tk 

(19) 

If  we integrate this expression within a finite ellipsoidal volume Vrs, the centers r 
and s being at the foci, we get 

Jv rs iEr j~s "]Vrs 

this first term of the series being the more especially important as the ratio X~ of 
the principal axis of the ellipsoid to the interatomic distance R~ is nearer to 1. 

The quantity f v ,  r162 dv is a monotonous function of X~, going to S2:~y 

when Xr~ goes to infinity. Therefore, 

fv r162 = Ar~(X~)S~j; 0 ~< A~,(X~s) ~< 1. (21) 
rs 

Hence, the integration of the electronic density, within a bond volume equivalent 
to a finite ellipsoid with the two centers as loci, leads to a bond population defined 
as 

h r 

t~r ]~s 

and, then, proportional to the quantities 

~ r (14') 

and 

Pr.s = Pr~sj 
ier j~s 
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Fig. 1. Standard curves, C--C bond, K ~ 
version 

where the term ~ pr~ :~ comes from the orthogonal analysis and the term S~ :~j is just 
an overlap integral on Slater's functions. 

Of course, the charges may be studied, in the very same way. 

3. Proving the Existence of an Empirical Relationship 

The idea that an empirical relationship may occur between the length and the order 
of a given bond is clearly not a new one. As early as 1939, C. A. Coulson [10] has 
given such a relationship within the frame of the Htickel method. Since then, 
H. C. Longuet-Higgins and L. Salem [11] have proved that such a relationship may 
exist when both bond energy and bond order are univocal functions of  interatomic 
distances. 

Then, as the quantities P,~s and p~s may be regarded as generalizations of the bond 
order concept (with a scaling factor, of course), we can expect to find a relationship 
such as 

Rr, = F(pr~). (23) 

We can look for several forms. For instance, Coulson has used a continued 
fraction. The examination of  Figs. 1 and 2, representing the standard curves for 
the C- -C bond for the K ~ and K(R)  versions, leads us to a simple quadratic form: 

Rr~ = ao + alp,~ + a2p~. (24) 

R (~) T 

0,5 10 1,5 20 P 

Fig. 2. Standard curves, C--C bond, K(R) 
version 
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Table 1, Coefficients in the semi-empirical quadratic expression for the C-C bond 

Variant Basis ao al a2 

K ~ L6wdin 1.98679 - 0.82794 0.20946 
Slater 1.85123 - 0.54204 0.10790 

K(R) L6wdin 1.99515 -0.84810 0.21887 
Slater 1.87006 -0.57534 0.11986 

Of course, the actual values of the coefficients depend on the choice of the version 
and of the population analysis used. Our results for the C- -C  bond are summarized 
in Table 1. 

As we are intent on building up an empirical relationship, it is worth proceeding 
to a statistical examination of the results obtained from the four possibilities for a 
large set of  molecules the geometries of which are known from microwave spectrom- 
etry [12]. These results, and their statistical analysis, are collected in Table 2. 

Table 2. Comparison between Roxp and Rc~l for the C-C bond 

K ~ variant K(R) variant 

Molecule Rexp (/~) L6wdin Slater L6wdin Slater 

C2H6 1.536 1.535 1.536 1.536 1.537 
C2H4 1.338 1.336 1.338 1.337 1.340 
C2H2 1.206 1.206 1.206 1.206 1.206 
CoH6 1.393 1.396 1.393 1.395 1.390 
CH3--C~-CH 1.459 1.456 1.471 1.459 1.457 

1.206 1.211 1.209 1.212 1.210 
F C ~ C H  1.198 1,209 1.210 1.209 1.210 
C I C = C H  1.204 1.212 1.214 1.214 1.213 
CH3--CN 1.458 1.443 1.454 1.436 1.440 
CFa--CH3 1.492 1.493 1.478 1.494 1.483 
C H - - C H - - C H 2  1.515 1.550 1.577 1.546 1.570 

I I 1.300 1.321 1.321 1.322 1.327 
C H 2 = C H - - C N  1.339 1.347 1.354 1.349 1.358 

1.426 1.419 1.429 1.412 1.476 
CsHsN 1.395 1.394 1.388 1.393 1.385 

1.394 1.398 1.398 1.397 1.395 
CH3CHO 1.501 1,485 1.483 1.482 1.476 
C H 2 = ~ O  1.314 1.316 1.328 1.315 1.325 
CFo--C~=CH 1.460 1.468 1.473 1.467 1.471 

1.201 1.206 1.207 1.206 1.207 

(Re:,p/Roa~) 0.9975 0.9953 0.9980 0.9949 
Probable error in 7o 0.5 0.7 0.6 0.9 

Linear regression 
a 1.0089 0.9831 1.0164 0.9814 
b -0.0155 0.0166 -0.0250 0.0185 
r 0.9954 0.9903 0.9947 0.9860 
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Fig. 3. Bond population as a function of 
interatomic distance K(R) version, L~Swdin's 
basis 

Although the four possibilities lead to good results, a slight advantage must be 
proclaimed in favor of  the  analysis using L6wdin's basis. The two versions appear 
to be nearly equivalent. As the K(R) version seems to us a little more theoretically 
founded, we have chosen to carry on our work in this last version. 

We must recall now that the use of  a semi-empirical relationship implies an univocal 
correspondence between the bond population Prs and the interatomic distance Rrs. 
In Figs. 3 and 4 the variations ofprs versus Rr~ are shown, both for the L6wdin and 
Slater bases. In the first case, it can be seen that the three functions are monotonous 
for distances longer than 0.8 A (below, this is, of  course, of  no practical importance). 

On the other hand, for Slater's basis, the functions associated with ethane and 
ethylene go through a maximum, and, therefore, there is no biunivocal corre- 
spondence between p~s and R~. ~ Then, we choose to carry on this work with the 
population analysis using L6wdin's basis only. 

4. Extension to Other Bonds 

In order to evaluate the coefficients of the quadratic expression associated to a 
given bond, we shall proceed as follows: 

first, we select four molecules, the known microwave geometries of  which give, 
within an accuracy better than 0.01 •, four bond lengths distributed in a 
convenient way between the shorter and the longer distances associated with 
the studied bond; 

second, we compute, in the selected version, the corresponding bond populations; 

third, we compute the least square coefficients of  the quadratic relationship; 

fourth, we check the relationship fit on a set of more than ten different bond 
lengths coming themselves from microwave data. 

2 We must notice that the same results, even more accentuated, are exhibited when K ~ 
version is used. 
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Fig. 4. Bond population as a function of 
interatomic distance K(R) version, Slater's 
basis 
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The compu ted  coefficients are col lected in Table  3. They are associa ted with K(R) 
version and L6wdin ' s  basis popu la t i on  analysis.  

The  goodness  o f  the fit is evaluated  th rough  the l inear  regression 

Re~,p = aRo~l + b (25) 

and  the co r respond ing  figures are given in Table  4. 

We give also some results ob ta ined  with K ~ version, always for L6wdin ' s  basis 
popu la t i on  analysis  (Table  5). 

I t  can be seen in Table  6 tha t  the  fit remains  good.  

In  fact, the results ob ta ined  bo th  with K(R) and K ~ versions are close enough so 
tha t  it  is poss ible  to use the coefficients collected in Table  2, even i f  the ac tual  
computa t ions  were done  in the K ~ version, Some examples  o f  this cross calculat ion 

are  given in Table  7. 

Table 3. Coefficients for empirical relationships (K(R) version, L6wdin's basis) 

Bond ao al a2 

C- -C 1.99515 -0.84800 0.21887 
C- -N 1.90064 -0.82957 0.20812 
C--O 1.87316 - 1.01108 0.32704 
C--S 2.31938 -0.99880 0.29237 
C - - F  1.92763 -- 1.63290 0.95066 
C--C1 2.45379 - 1.63913 0.78718 
C--Br 2.41404 -0.89824 0.17074 
N- -O 1.45012 -0.30358 -0.00415 
C ~ H  2.0800 -2.2343 1.1526 
O- -H 1.51346 - 1.30910 0.49688 



10 

Table 4. Analysis of fit (K(R) version, L6wdin's basis) 

C. R. Guerillot et al. 

Bond a b r n 

C - - C  1.0336 -0 .0461 0.9946 31 
C - - N  0.9985 0.0225 0.9985 13 
C - - O  1.0207 -0 .0293 0.9965 14 
C- -S  1.0003 -0 .0005  0.9939 10 
C - - F  0.9898 0.0134 0.9961 14 
C--C1 1.0366 -0 .0619 0.9957 10 
C - - B r  0.9999 0.0003 0.9979 10 
N - - O  0.98607 0.03164 0.9733 10 
C - - H  0.9980 0.0013 0.9614 10 

Table 5. Coefficients for empirical relationships (K ~ version, L6wdin's basis) 

Bond ao al a2 

C - - C  1.98679 -0 .82794 0.20946 
C - - N  1.89800 -0 .83129 0.21089 
C - - O  1.82313 -0.92101 0.28341 
C - - F  1.88682 - 1.61586 0.98719 
C--CI  2.48741 - 1.99342 0.91051 

Table 6. Analysis of f i t (K  ~ version, L6wdin's basis) 

Bond a b r n 

C - - C  1.0311 -0 .0433 0.9953 31 
C - - N  0.9807 0.0285 0.9988 13 
C - - O  1.0062 -0 .0112  0.9922 14 
C - - F  1.0020 -0 .0338 0.9992 14 
C--C1 1.0467 -0 .0779  0.9912 7 

Table 7. Bond length evaluation from K ~ version calculated bond populations 
and empirical coefficients listed in Table 2 

Molecule Bond p~a s Ro~I (/k) Reap (/~) 

CH3--CH2F C - - C  0.6781 1.521 1.533 
CH3--C~--~CH C - - C  0.8058 1.454 1.459 

C~-C 1.5279 1.210 1.206 
C6Ho C - - C  0.9355 1.393 1.393 
CsH~N C - - N  0.8482 1.347 1.341 
CH3NH2 C - - N  0.6008 1.477 1.474 
HCN C~-N 1.4131 1.144 1.153 
CH3OH C - - O  0.5069 1.442 1.434 
CH3CHO C--O 0.9192 1.212 1.216 
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5. Feasibility of  an lterative Procedure 

AIl the preceding results were obtained through EHT computations with assigned 
known geometries. Our next problem is: are we now able to forecast a given bond 
length in an unknown-geometry molecule ? 

We have already seen that the bond population P~s varies as a function of the length 
Rrs. Then, if we take an initial length R~ ~ we can compute, through the EHT 
procedure, a bond population p,~(~ Then, we can deduce a length #(1> . . . . .  

If  R~ p is the true distance between atoms r and s, an iterative procedure is feasible 
if: 

1. the bond population p)~ is a monotonous function of the length R,s, at least in 
the region of practical physical importance; 

R(o> 2. the difference --rs#<l> _ R(0>~ ,;o~ nearly a linear function of the difference R ~  p - . . . . .  

these two functions going simultaneously to zero; 

3. in the neighborhood of R~ ~ - R~ ~ = 0, the figurative points, for a given bond, 
lie on the same straight line whatever the studied molecule may be. 

We had already seen (Fig. 3) that, for lengths longer than 0.8 A, the bond popula- 
tion p)~ meets the first condition. Then, we had studied the linear regression 

R(I> _ #co> a(R~,~p # (o~  + b (26) 
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for  the three molecules ethane,  ethylene, and  acetylene,  the s tar t ing length R~ ~ 
going f rom 0.8 to 2 .4 /k .  Results  are  given in Table  8. In  this table,  the  last  l ine 
cor responds  to  the whole set of  points  be longing  to the three molecules,  the  values 

1~(o) of  R ~  p - --r~ s tanding between - 0 . 3  and +0 .3  A. 

The examina t ion  o f  Table  8 and o f  the cor respond ing  Fig.  5 al lows us to assert  
tha t  the two last  condi t ions  are also met.  8 More ,  it  is easy to show that ,  i f  the  a 
coefficient in the l inear regression (26) is included between 0 and  1, then  the 
successive differences D ( " ) =  R ~"~-  R ~"-~) form a con~,ergent sequence for  
Cauchy ' s  rat io,  D ~ + ~)/D ~ ,  is equal  to  (1 - a). Therefore ,  the  sequence will a lways 
converge to R o~p, within an accuracy of  the magni tude  of  the p roduc t  ab. F o r  the 
C - - C  bond,  for instance, this accuracy would  be abou t  0 .0066/~4 

In  order  to check the feasibil i ty of  such an i terat ive rout ine,  we have s tudied the 
benzene molecule.  As a s tar t ing point ,  we have taken  a Kekul6  formula ,  the C - - C  

_ RCO) Table 8. Linear relationship between ~-TsR(I~ --,,m0> and R~~ p -- r~ 

Molecule a b r 

C2He 0.6968 0.0303 0.9973 
C2H4 0.5994 0.0295 0.9961 
C2H2 0.5875 0.0411 0.9880 

C--C 0.6802 0.0097 0.9910 

3 As Longuet-Higgins and Salem [11] have already foreseen, for a large difference R~ xp - 
R~ ~ figurative points lie on slightly different lines in account of hybridization. 
4 Computational hazards may perhaps introduce oscillations when a will be very near to 1. 
We have not found this trouble in our present computations. It could be eliminated by taking 
as a new starting point, the mean of the two oscillating values. 
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lengths being, alternately, 1.34 and 1.54 A. For  each step, we have computed the 

bond  popula t ions  and deduced new C - - C  lengths. Our  results, shown in Fig. 6, 

are also collected in Table 9. 

Therefore, it is clear that an iterative rout ine is feasible. For  evident reasons we 

have modified the procedure used for benzene, in order to incIude an accelerating 

factor and  a stop test. 

Table 9. Iterative routine on benzene 

Step R ~ p~ R~ R ~ Pb R~ 

1 1.54 0.7556 1.479 1.34 1.0462 1.347 
2 1.48 0.8263 1.444 1.35 0.9947 1.368 
3 1.44 0.8732 1.421 1.37 0.9782 1.375 
4 1.42 0.8959 1.411 1.38 0.9602 1.383 
5 1.41 0.943 1.400 1.385 0.9468 1.388 
6 1.40 0.9259 1.398 1.39 0.9438 1.390 
7 1.398 0.9309 1.395 1.390 0.9380 1.392 
8 1.395 0.9350 1.394 1.392 0.9372 1.393 
9 1.394 0.9354 1.393 1.393 0.9356 1.393 

10 1.393 0.9352 ] .393 1.393 0.9353 1.393 
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We propose to perform as follows: 

First step: take an initial set {R(r ~ of bond lengths deduced either from a limit 
formula and a localized bond length system (for instance Pauling and Huggins 
[13] or Schomaker, Stevenson and Gordy [14] or from the well-known Pople's 
standard lengths table [15]); 

Second step: compute the bond populations {p~0)} corresponding to this initial 
geometry, get a set of distances {R'r,} from the quadratic relationship, and then 
compute the bond lengths for the next iteration with 

R~a) R<0) + 1.5(R~O) _ ~xo)~ (27) 

where 1.5 is the accelerating factor. 

Iterate step 2 till the stop condition 

[R~: ) - ~-T~R<">ljm~ < ~ (28) 

will be met. 

In our present computation, we have taken e = 0.006 A. 

6. Some Examples 

This routine was applied to molecules of pyridine, furan, butadiene, formic acid, 
and formamide. When dealing with cyclic molecules, we have evaluated, at each 
step, the valency angles through a least square method, admitting the equality of 
all the angular force constants. This is clearly a rough approximation. 

More, it is clear that bond populations depend on valency angles. For instance, in 
water molecules, when the HOH angle increases from 80 to 140 degrees, the O--H 
bond population increases also, from 0.4942 to 0.5662, letting out a decrease of the 
O- -H length from 0.99 to 0.95 A. 

But such large variations are linked with large angular variations. In our furan 
calculation, the larger angular variation was less than 5 degrees. So the error due 
to the dependence of bond population on angular variation is quite less than those 
arising from the supposed equality of the angular force constants. 

However, in more accurate computations, it is necessary to take this dependence 
into account. Then the iterative routine must be fulfilled for each angular value. 
Unfortunately the EHT method, in its usual formulation, is unable to give valency 
angle. Therefore, no energy criterion can be used. Angular force constants must be 
taken from literature tables . . . .  But they are scarcely accurate for a given molecule, 
specially an unknown one. 

Therefore, we think that it is sufficient to iterate simultaneously both the lengths 
and the angles. 

Thereafter our results are as shown in Tables 10-14. 
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Table 10. Geometry of the pyridine molecule 
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Pyridine 

Step RI2 R23 R34 R45 Rs~ R61 

0 1.25 1.54 1.34 1.54 1.34 1.47 
1 1.300 1.429 1.368 1.433 1.363 1.396 
2 1.325 1.405 1.388 1.414 1.373 1.368 
3 1.337 1.396 1.394 1.405 1.384 1.355 
4 1.340 1.390 1.400 1.400 1.390 1.340 

exp [16] 1.340 1.395 1.394 1.394 1.395 1.340 

Furan 

Step R12 R2a R34 

0 1.40 1.34 1.54 
1 1.369 1.364 1.458 
2 1.344 1.363 1.445 
3 1.342 1.371 1.439 

exp [17] 1.362 1.361 1.431 
[18] 1.371 1.354 1.440 

Butadiene. H2C(1)--C(2>H--C(3)H--C(4>H2 

Step RI2 R23 

0 1.34 1.54 
1 1.343 1.458 
2 1.348 1.448 
3 1.349 1.450 

exp [19] 1.337 1.483 

O1 
/ /  

Formic acid. H - - C  
\ 

O2--H 

Step ~ O 1  C--O2 

0 1.20 1.40 
1 1.205 1.360 
2 1.212 1.339 
3 1.217 1.328 
4 1.220 1.322 

exp [20] 1.202 1.343 
[21] 1.245 1.312 

TaMe 11. Geometry of the furan 
molecule 

Table 12. Geometry of the butadiene 
molecule 

Table 13. Geometry of the formic acid 
molecule 
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Formamide. H--C 
\ 

NH2 

Step ~ 0  C--N 

0 1.20 1.47 
1 1.216 1.392 
2 1.231 1.369 
3 1.240 1.357 
4 1.243 1.353 

exp [22] 1.193 1.376 
exp [23] 1.243 1.343 
exp [24] 1.243 1.319 

C. R. GueriUot et al. 

Table 14. Geometry of the formamide 
molecule 

For every example, our results are fairly accurate, the relative error remaining 
near 1%, except for the C - - N  bond in formamide, when compared with the data 
from Ottersen Tot [24]. But this author has worked on the crystal phase and he 
quoted that hydrogen bonding plays an important part and that there is a large 
shortening of the C - - N  bond, precisely due to the hydrogen bonding. It can be 
seen that, on an average, our results lie in an intermediary position between micro- 
wave and radiocristallographical data. 

7. Conclusion 

Either in its genuine K ~ version or in its more elaborated K(R) one, the EHT 
method looks like a topological algorithm unable to forecast bond lengths from 
an energy minimum condition. 

The LSwdin basis, up to now regarded just as a matter of  convenience, probably 
plays a more important part. The population analysis, when done upon this basis, 
enables us to determine a bond population which can be used in the same way as 
Htickel's bond order. 

Specially, an empirical relationship between the length of a bond and the value of 
the corresponding bond population does exist. 

Standard curves may be laid down. An iterative routine may be formulated which 
allows to forecast, within an accuracy near 1%, a given bond length in a given 
unknown molecule. 
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